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Figure 4 - SEM image and EDS elemental distribution for HfO2 (m/c), HfO2:Ag (m) and HfO2:Pr (c).

Source: Author’s Construction.
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Figures 3 and 4 show that all ZrO2 and HfO2 samples had agglomerated particles with varying 

shapes and with size in the order of micrometers, with a tendency to form rough edges. With calci-

nation being a part of the synthesis route, these characteristics are corroborated by previous works 

(HORTI et al., 2020; SHAH; RATHER, 2021). The presence of more than one phase, as indicated by 

the XRD results, such as AgCl in the ZrO2:Ag sample, did not produce any SEM visible characteris-

tics in Figure 3.

The EDS characterization demonstrated a uniform distribution of the elements throughout 

each sample, with no relevant difference in homogeneity between zirconium, oxygen and its dop-

ants or hafnium, oxygen and its dopants. This is frequently presented as one of the advantages of 

this synthesis route, which leads to a polymerization process and a good dispersion of the metal 

ions (GOLYEVA et al., 2020). The multiphasic ZrO2:Ag and HfO2 also presented a uniform el-

emental distribution. This is another indication, along with XRD results, that the formed AgCl 

was stable and the formation of Ag2O wasn’t favored even at the calcination temperature of 500 ºC, 

which was also observed in previous studies (SIDDIQUI et al., 2013).

DYNAMIC LIGHT SCATTERING

The dynamic light scattering measurements for hydrodynamic diameter and the polydisper-

sity of each sample suspension can be seen in Table 2:

Table 2 - Hydrodynamic diameter for each dispersed sample obtained using Dynamic Light Scattering.

Sample dispersion Hydrodynamic diameter (nm) Polydispersity (%)
ZrO2 (t) 2686 ± 465 11.9

ZrO2:Ag (m/t) 3411 ± 723 19.9
ZrO2:Pr (c) 2753 ± 590 21.6
HfO2 (m/c) 8486 ± 582 30.2

HfO2:Ag (m) 972 ± 400 27.7
HfO2:Pr (c) 2894 ± 1137 23.6

Source: Author’s Construction.

It is possible to infer from the data in Table 2 that the agglomeration observed in the previ-

ous SEM images occurred for all samples, given that their hydrodynamic diameter reached the order 

of a few micrometers, with the exception of HfO2:Ag, with 972 nm. This phenomenon is to be ex-

pected for these oxides, since all of them underwent calcination at 500 ºC or above, providing energy 

through heat, which favors sintering and agglomeration of smaller particles (KLEIN et al., 2023).  

Additionally, the process of suspending the particles in water may itself result in larger agglomerates 

(SHAH; RATHER, 2021). All samples showed high values for their polydispersity, with the small-

est being pure ZrO2, with 11.9%. This indicates that the particles not only agglomerated, but this  
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agglomeration happened in an irregular manner, with a relevant difference in particle size (VOSS  

et al., 2020). The reduction in the hydrodynamic diameter of HfO₂ and ZrO₂ particles doped with 

Ag and Pr can be attributed to changes in surface energy and the crystalline structure resulting from 

doping (SATO et al., 2014).

Furthermore, no surfactant was used at any moment, especially due to the synthesis route 

requiring calcination. Surfactants such as oleic acid have been used in similar works to induce better 

homogeneity, smaller particle size and even to reduce their toxicity, but its use depends heavily on the 

chosen synthesis method (VASILAKAKI; NTALLIS; TROHIDOU, 2023).

DYE DEGRADATION

The results obtained from the degradation assays of crystal violet dye can be seen in Table 3. 

The results indicate the degradation percentages for various samples, including the blank, tetragonal 

ZrO2, a mixture of ZrO2:Ag in both monoclinic and tetragonal phases, ZrO2:Pr in the cubic phase, as 

well as monoclinic and tetragonal HfO2. Additionally, it includes HfO2 with Ag in the monoclinic 

phase, and Hf with Pr in the cubic phase.

Table 3 - Percentage of crystal violet dye degradation for ZrO2 and HfO2  
samples doped with Ag and Pr in tetragonal, monoclinic and cubic forms.

Sample Degradation (%)
Blank 15 ± 3

ZrO2 (t) 24 ± 4
ZrO2:Ag (m/t) 66 ± 3

ZrO2:Pr (c) 19 ± 4
HfO2 (m/c) 71 ± 5

HfO2:Ag (m) 37 ± 11
HfO2:Pr (c) 37 ± 5

Legend: 
t = tetragonal 
c = cubic 
m = monoclinic 
m/t = mixture of monoclinic and tetragonal 
m/c = mixture of monoclinic and cubic

Source: Author’s Construction.

When analyzing the blank sample, containing only the dye, it exhibited the lowest degrada-

tion rate, as expected. However, for the ZrO2 stabilized in the tetragonal form, there is a higher deg-

radation rate compared to the blank. Nonetheless, it remains low, given that the material only exists 

in one phase, and therefore, does not demonstrate significant photocatalytic effects. Conversely, the 

ZrO2:Ag with various phases exhibited the second highest degradation rate, potentially attributable to 

the microstructure’s synergistic effect of the metal oxide along with the silver chloride. Additionally, 
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the presence of different phases further enhances the photocatalytic performance (BAKARDJIEVA 

et al., 2005; NARAGINTI et al., 2019).

The ZrO2 stabilized with Pr in the cubic form exhibited the lowest degradation rate among 

the various oxides. This variance could be linked to the differing oxidation states of these two ele-

ments, namely Zr4+ and Pr3+. These ions, with varying oxidation states, can induce distortions in the 

material’s crystal structure, potentially leading to the generation of defects. Consequently, this may 

decrease the photocatalytic activity of the material, especially considering it only presents one phase 

(LIANG et al., 2009).

The sample with HfO2 stabilized in the monoclinic and cubic phases exhibited the highest deg-

radation rate among all samples. This outcome is directly linked to the presence of distinct phases in 

the material, each possessing different surface properties. Consequently, the coexistence of these two 

phases can substantially enhance the diversity of catalytic active sites for dye degradation, thereby 

boosting photocatalytic activity. Additionally, this presence can alter the material’s band gap, further 

influencing its performance (BAKARDJIEVA et al., 2005; PAUL; CHOUDHURY, 2014).

For the sample of HfO2:Ag stabilized in the monoclinic phase, a decrease in the dye degra-

dation rate is observed compared to HfO2 in different phases. The presence of only one phase may 

have contributed to reducing the synergistic effect between HfO2 and silver, as samples with mixed 

phases demonstrate a considerable increase in their photocatalytic activity. Similarly, the sample of 

HfO2:Pr stabilized in the cubic phase showed a degradation percentage very similar to that of HfO2 

doped with silver. Thus, it is observed that despite changing the chemical element and the stabi-

lized phase, the degradation percentage did not show a relevant difference. Therefore, the mixture 

of phases is extremely important to achieve good dye degradation results (BAKARDJIEVA et al., 

2005; KAKO; YE, 2010).

CONCLUSIONS

The results indicated that the presence of multiple phases in materials such as HfO2 and 

ZrO2 significantly increases the efficiency in dye degradation, suggesting that the coexistence of 

different phases provides a greater diversity of active catalytic sites. On the other hand, materials 

with a single phase, such as ZrO2 and HfO2 in cubic and monoclinic phases, respectively, showed 

lower degradation rates, confirming the importance of phase mixture for better results in dye re-

moval. The characterization of the samples revealed the presence of agglomerated particles with 

uniform distribution of elements, and hydrodynamic diameter measurements indicated a tendency 

for agglomeration after calcination.
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