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ABSTRACT

The global trade in pesticides is expanding in response to the demands of the agroindustry. Glyphosate serves 
as the primary active ingredient in numerous herbicides, typically applied through spraying. However, the 
glyphosate not taken up by the plants accumulates in the soil and wastewater, posing potential risks to the 
environment and human health by contributing to the development of various diseases. Nanocomposites are a 
class of materials that exhibit enhanced properties by the synergistic effects arising from the combination of 
their constituents. This emerging technology holds significant promise in the field of detecting and eliminat-
ing pesticides and other chemical compounds from wastewater. A bibliographic review was carried out in the 
Periódicos Capes database with the descriptors “nanocomposites” and “glyphosate” with the Boolean operator 

“and”. Articles available in full for consultation and original articles in English were included. Articles without 
full access and literature review articles were excluded. The timeline was selected automatically due to the 
articles found from 2017 to 2023. 42 articles were selected. Thus, we sought to evaluate the properties and ef-
ficiency of the nanocomposites used in the literature.
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RESUMO 

O comércio global de pesticidas está se expandindo em resposta às demandas da agroindústria. O glifosa-
to serve como o principal ingrediente ativo em vários herbicidas, normalmente aplicados por pulverização.  
No entanto, o glifosato não absorvido pelas plantas se acumula no solo e nas águas residuais, representando 
riscos potenciais ao meio ambiente e à saúde humana, contribuindo para o desenvolvimento de várias doen-
ças. Os nanocompósitos são uma classe de materiais que exibem propriedades aprimoradas pelos efeitos 
sinérgicos decorrentes da combinação de seus constituintes. Esta tecnologia emergente é significativamente 
promissora no campo da detecção e eliminação de pesticidas e outros compostos químicos de águas residuais.  
Foi realizada uma revisão bibliográfica na base de dados Periódicos Capes com os descritores “nanocompósi-
tos” e “glifosato” com o operador booleano “e”. Foram incluídos artigos disponíveis na íntegra para consulta e 
artigos originais em inglês. Artigos sem acesso total e artigos de revisão de literatura foram excluídos. A linha 
do tempo foi selecionada automaticamente devido aos artigos encontrados de 2017 a 2023. Foram selecionados 
42 artigos. Assim, buscamos avaliar as propriedades e eficiência dos nanocompósitos utilizados na literatura.
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INTRODUCTION 

The global trade in pesticides continues to expand annually, with changes and innovations 

driven by market demands (Boccioni et al., 2023). Glyphosate, an organophosphate compound, is a 

key ingredient in over 750 agrochemicals and serves as the primary active component in numerous 

herbicides (Barcellos, 2023). Glyphosate is officially authorized for sale in 130 countries, and it is 

estimated that around 919,000 tons of this pesticide are used each year (Valavanidis, 2018).

The initial findings about glyphosate emerged in the 1950s. It wasn’t until 1970, however, that 

Dr. Phil Hamm made a crucial discovery regarding glyphosate’s ability to bind with metal, thereby 

inhibiting a crucial metabolic pathway in plants (Dill et al., 2010). Just months after Dr. Hamm’s 

discovery, the product was already undergoing field tests. Subsequently, in 1971, the first glyphosate-

based agrochemical was introduced to the market (Richmond, 2018).

Glyphosate is commonly sold in the form of a salt, which is obtained by formulating it with 

counter-ions such as potassium, ammonium, or isopropylamine. It is then diluted in water, mixed 

with surfactants and other additives, and applied by spraying onto the leaves of the target plant  

(Barcellos, 2023; Dill et al., 2010; Richmond, 2018). Numerous studies have been conducted to in-

vestigate the use of glyphosate. While it is considered to be mildly toxic, there is evidence of its im-

pact on the environment, primarily stemming from the resistance developed by certain weed species. 

Prolonged exposure to the pesticide or ingestion of contaminated food has also been found to affect 

humans (Junior et al., 2002).

Glyphosate is commonly used on a variety of crops such as rice, coffee, sugarcane, corn, 

pasture, soy, sorghum, and wheat (Cabral, 2018). As a result of its application in agriculture, some of 

the residues from this pesticide, which are not taken in by the plant, persist in the soil, accumulate 

in water sources, and contribute to cross-contamination (CEE, 2019). The management and sustain-

able use of water resources necessitate wastewater treatment to ensure human and environmental 

safety in light of the presence of pesticides (Li et al., 2021). Over the years, various technologies have 

been studied for the removal of complex compounds, particularly challenging-to-remove pesticides  

(Melo et al., 2022).

Nanotechnology is an emerging and versatile field that encompasses various areas of research. 

One such area involves the utilization of nanocomposites for the effective removal of complex com-

ponents from wastewater. Nanocomposites boast a high surface area, making them highly efficient 

for this purpose, and they also exhibit superior properties compared to conventional composites  

(Cao et al., 2019). Thus, the objective of this work was to review the existing literature to seek further 

clarification about the nanocomposites used and the main existing nanotechnologies for the removal 

of glyphosate from wastewater.
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METHODOLOGY

A literature review was conducted to explore the use of nanocomposites for the removal of 

glyphosate using the photocatalyst method. The bibliography was compiled by searching articles in 

the “Periódico Capes” database (Web of Science) using the keywords “nanocomposites” and “glypho-

sate.” Only articles available in full and written in English were considered. The focus of the search 

was on selecting articles that discuss the photocatalyzed removal of glyphosate. Articles without full 

access, abstracts, review articles, and publications before 2017 were excluded. The search for articles 

was carried out in May 2023. 

Figure 1 - Scheme of the methodology used.

S ource: Built by the author.

In the end, 42 articles were selected and separated into detection, 15 articles, removal, 22 ar-

ticles, and for other applications, 5 articles. 

The articles categorized as removal were further subdivided into the main methods used in re-

search. Among the primary techniques highlighted were adsorption, catalytic, magnetic, membranes, 

oxidative, and photocatalytic reduction.
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RESULTS AND DISCUSSIONS

Glyphosate, which is also referred to as N-(phosphonomethyl)glycine as per the International 

Union of Pure and Applied Chemistry (IUPAC), is an organophosphate compound with a molecular 

formula of C3H8NO5P and a molecular mass of 169.1 g mol-1
 (IBAMA, 2019). This molecule exhibits 

high polarity, resulting in its high solubility in water and low solubility in common organic solvents 

such as ethanol and acetone (Junior, 2002; Cao et al., 2019).

Figure 2 - Glyphosate chemical structure.

Source: Adapted from [13].

Glyphosate first came under scrutiny in the 1950s, and soon after, it was introduced as a herbi-

cidal agrochemical (Dill et al., 2010). Presently, glyphosate is a constituent of over 750 agrochemicals 

and serves as the primary active ingredient in numerous herbicides (Barcellos, 2023).

The herbicide containing glyphosate is sprayed on the leaves of weeds, disrupting the plant’s 

nutrient absorption (CEE, 2019; Cabral, 2018). Any remaining glyphosate not absorbed by the plant’s 

leaves ends up in the soil. Despite the plant’s roots being unable to take in the glyphosate from the soil 

(Boccioni et al., 2023; Barcellos, 2023), studies have detected glyphosate concentrations in both soil 

and groundwater (Valavanidis, 2018; Li et al., 2021).

Many studies have examined the toxicological effects of glyphosate. While the World Health 

Organization (WHO) considers its acute toxicity to be low at 5600 mg/kg (Junior et al., 2018;  

Jayasumana et al., 2014), the accumulation of this herbicide in soil and water systems raises concerns 

about its potential impact on the environment and human health.

According to recent research, exposure to glyphosate, either through direct contact or indi-

rect ingestion, has been linked to a range of health issues including gastrointestinal disorders, obe-

sity, diabetes, heart disease, depression, infertility, microcephaly, cancer development, Alzheimer’s,  

Parkinson’s, and disruptions in hormonal balance (Cao et al., 2019; Cabral, 2018).

As reported by BBC News Brasil in 2019, the European Union, Austria, and Germany have 

chosen to ban the use of glyphosate. Meanwhile, other countries like the Netherlands, Mexico,  
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and France have taken steps to eliminate glyphosate usage within 5 years. In Brazil, glyphosate use 

is still permitted after reassessments by the National Health Surveillance Agency - Anvisa, but with 

specific restrictions (ANVISA, 2020).

Nanocomposites are materials that incorporate one or more materials, offering great promise 

due to their multifunctionality and the potential to enhance their properties through unique combina-

tions (Zhu et al., 2001) Additionally, nanocomposites are distinguished by the presence of at least one 

material at the nanometer scale, which is less than 100 nm. This results in a high surface area, making 

the material potentially useful for removing chemical pollutants from the environment (Ries et al., 2023).

In researching nanocomposites, a comprehensive search was conducted to identify and poten-

tially eliminate glyphosate from contaminated areas within the timeframe of 2017 to 2023. Table 1 

presents the primary references concerning the detection of glyphosate.

Table 1 - References related to glyphosate detection.

Reference Nanocomposite Target
(Balaji et al.,2020) BiOCl-BiOBr@Pt/Au semiconductor-plasmonic Detection of pesticides.
(Do et al., 2020) Chitosan (CS), CS/ZnO, CS/GO Detection of glyphosate.
(He et al., 2022) Co3O4/ZnO/Au Detection of glyphosate.

(Luo et al., 2022)
ratiometric fluorescent and smartphone-inte-

grated colorimetric by carbon dots encapsulated 
porphyrin metal-organic frameworks

Detection of glyphosate.

(Ma et al., 2023)
Gold Nanoclusters and Silica-Coated Carbon 

Dots-Assisted Ratiometric
Detection of glyphosate.

(Maji et al., 2023)
CuCo2O4, Protonated-g‑C3N4,  

3D-Graphene Oxide Sheets
Detection of glyphosate.

(Qiang et al.,2022) UiO-67 with porous carbon derived from Ce-MOF Detection of glyphosate.

(Ren et al., 2022)
Molecularly imprinted polymer and  

graphene oxide nanocomposite.
Detection of glyphosate in corn.

(Butmee et al., 2021)
Screen-printed carbon electrode with silver  

nanoparticles, reduced graphene oxide.
Detection of glyphosate.

(Santanna et al., 2022)
Activated biochar (AB4) and  

reduced graphene oxide (rGO).
Detection of pesticides  

and glyphosate.

(Thakkar et al., 2022)
Graphene oxide, amino- and guanidine  

functionalized graphene oxide, exfoliated  
graphene, and commercial graphene nanoplatelets.

Detection of pesticides  
and glyphosate.

(Valle et al., 2021) Ag-doped ZnO/AgO Detection of glyphosate.
(Wang et al., 2022) Ti3C2Tx/Cu-BTC Detection of glyphosate.

(Zarejousheghani et al., 2021)

(3-acrylamidopropyl) trimethylammonium
chloride, [2-(acryloyloxy)ethyl]  

trimethylammonium chloride, and diallyl  
dimethylammonium chloride

Detection of glyphosate.

(Zhang et al., 2020) CuAl-LDH/Gr Detection of glyphosate in water.
Source: Built by the author

The detection of glyphosate revealed a significant number of references featuring nanocom-

posites with graphene, often functionalized with metals such as copper, cobalt, and silver, as well as 

nanocomposites of metals like bromine, silver, gold, zinc oxide, titanium, and copper. 
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Additionally, nanocomposites are utilized for the removal of glyphosate, and the selected ref-

erences can be found in Table 2.

Table 2 - References related to glyphosate removal.

Reference Nanocomposite Target

(Zhou et al., 2020) Ag/ZrGP
Catalytic reduction for  

removing pesticides.

(Hosseini et al., 2019) Graphene oxide/TiO2
Remove glyphosate, trifluralin,  

and butachlor herbicides by  
polysulfone membranes.

(Briceno et al., 2022) CoFe2O4-chitosan-graphene Glyphosate removal. 
(Huang et al., 2022) LDH@Bt Glyphosate and heavy metal removal. 

(Milojevic-Ravik et al., 2018) Polyaniline/FeZSM-5
Oxidative degradation of  

herbicide glyphosate.
(Zue et al., 2021) Fe3Ce1Ox Glyphosate removal. 

(Li et al., 2021)
Graphene doped with  

-Ti/-V/-Cr/-B/-Ca/-N/-Cu/-O/-Pd/-Pt
Removal of glyphosate by adsorption. 

(Marin et al., 2019) Graphene oxide with MnFe2O4 Removal of glyphosate by adsorption.
(Santos et al., 2017) Graphene oxide with α and γ-Fe2O3. Removal of glyphosate by adsorption.

(Yan et al., 2022) HFO@NDA88 and HFO Removal of pesticides by adsorption.

(Yang et al., 2017) UiO-67/GO
Removal of organophosphorus  

pesticides by adsorption.

(Alam et al., 2022) CoNiWO4-gCN
Photocatalytic oxidation  

of glyphosate.

(LV et al., 2020) PbS@PDA/BiVO4
Photocatalytic degradation  

of glyphosate.

(Phopayu et al., 2020) Quantum dots-zinc oxide nanocomposites
Photocatalytic degradation of organic 

dyes and commercial herbicide.

(Tahman et al., 2021)
Cellulosic fabric based on graphene/ 

TiO2 nanocoating.
Photocatalytic degradation  

of glyphosate.

(Wu et al., 2020) Cyclodextrins grafted MoS2/g-C3N4
Photocatalytic degradation  
of glyphosate and Cr (VI).

(Zhao et al., 2022) PhC2Cu nanowires
Photocatalytic degradation  

of glyphosate and methyl violet.

(Liu et al., 2017)
Pyrrolic-N-doped graphene oxide/ 

Fe2O3 mesocrystal.
Photocatalytic degradation  

of glyphosate.

(Krobthong et al.,2022)
ZnO, ZnO/Al,
and ZnO/Cu

Photocatalytic degradation  
of glyphosate.

(Cao et al., 2019) BiOBr/Fe3O4
Photocatalytic degradation  

of glyphosate in water.

(Huo et al., 2018) BiVO4/Polydopamine/g-C3N4
Photocatalytic degradation  

of glyphosate.

(Bamiduro et al., 2023) Pd@BiVO4/BiOBr
Photocatalytic degradation  

of glyphosate.
Source: Built by the author.



35
Disciplinarum Scientia. Série: Naturais e Tecnológicas

Santa Maria, v. 25, n. 3, p. 29-42, 2024

Several methods have been employed for removing glyphosate, with adsorption and photo-

degradation being the most eff ective. Other removal processes include catalytic reduction (Zhou et al.,

2020), magnetic removal (Briceno et al., 2022; Huang et al., 2022), and membrane fi ltration (Hosseini

et al.,2019). A variety of references have utilized nanocomposites such as iron-cobalt (Briceno et al.,

2022), iron-cerium (Zue et al., 2021), iron-graphene oxide (Marin et al., 2019; Santos et al., 2017; 

Liu et al., 2017), and iron-bromine-bismuth (Cao et al., 2019), as well as graphene doped with me-

tallic elements like chromium, bromine, titanium, silver, and copper (Li et al.,2021). Additionally, 

nanocomposites containing silver (Zhou et al., 2020), bismuth (Cao et al., 2019; Huo et al., 2018), 

titanium (Hosseini et al., 2019; Li et al., 2021; Tahman et al., 2021), and zinc (Phopayu et al., 2020) 

have been employed. For a visual analysis of glyphosate degradation, refer to Figure 3 below.

Figure 3 - Maximum Glyphosate degradation and time of reaction of diff erent composites.

Source: Built by the author.

As per the data, it is noted that a majority of the nanocomposites achieved maximum glypho-

sate degradation within 60 minutes, while others achieved satisfactory degradation (over 50%) within 

175 minutes. Additionally, the surface area of the nanocomposites was analyzed, as depicted in Figure 4.
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Figure 4 - BET area of diff erent composites.

Source: Built by the author.

The references also examined the surface area (BET) of photodegradation, highlighting the 

effi  ciency of nanocomposites with high surface area for degrading glyphosate. Additionally, the refer-

ences delved into other applications of nanocomposites with glyphosate, which are detailed in Table 3.

Table 3 - References related to other applications of nanocomposite with glyphosate.

Reference Nanocomposite Target

(Gao et al.,2020) TiO2/Biochar with Light-Switchable Wettability.
Adhesive to improve 
herbicide adhesion.

(Chen et al., 2018)
Biochar, attapulgite (ATP), glyphosate (Gly), 

azobenzene (AZO), and amino silicon oil (ASO)
Controlled release of the herbicide

(Chi et al., 2023)
Attapulgite (ATP), NH4HCO3, amino silicon oil 

(ASO), poly(vinyl alcohol) (PVA), 
and glyphosate (Gly)

Controlled release of the herbicide

(Chi et al., 2021)
Palygorskite (Pal), ferroferric oxide (Fe3O4), 

glyphosate (Gly), and amino silicon oil (ASO).
Controlled release of the herbicide

(Zhang et al., 2020)
Attapulgite (ATP), glyphosate (Gly), 

and calcium alginate (CA)
Controlled release of the herbicide

Source: Built by the author

Several studies have examined the use of nanocomposites for the controlled release of herbi-

cides and pesticides, including glyphosate, in combination with adhesive to enhance adhesion (Gao

et al., 2018), amino silicon oil (Chen et al., 2018; Chi et al., 2021), ferroferric oxide (Chi et al., 2021), 

and calcium alginate (Zhang et al., 2020).



37
Disciplinarum Scientia. Série: Naturais e Tecnológicas

Santa Maria, v. 25, n. 3, p. 29-42, 2024

CONCLUSION

The review highlights the significant role of nanocomposites in effectively detecting and re-

moving glyphosate from wastewater. It underscores the diverse range of nanocomposites being uti-

lized for this purpose, emphasizing the need to develop environmentally friendly options that exhibit 

high efficacy in the detection and removal of glyphosate from water systems.
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