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ABSTRACT

Graphene oxide (GO) is a 2D material derived from graphene, having a hexagonal arrangement crystal struc-
ture together with the addition of various oxygenated functional groups, epoxides, alcohols, ketones, carbonyls 
and carboxyls. Hummers and Offeman, reported in 1958 a synthesis method that is still employed to the pres-
ent day, only with few adaptations. Thus, graphite is oxidized by treatment with potassium permanganate and 
sodium nitrate in concentrated sulfuric acid. Recently our research group evaluated several methodologies 
described in the literature, about the current synthesis of GO and the respective adaptations and improvements 
to the Hummers method. And based on these literary accounts, we developed a synthesis mechanism that could 
be applied in standard laboratory conditions attending demands for further research using the GO, which dem-
onstrated good yield with simple purification method and relatively short time to synthesis.
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RESUMO

O óxido de grafeno (GO) é um material 2D derivado do grafeno, possuindo uma estrutura cristalina com 
arranjo hexagonal juntamente com a adição de diversos grupos funcionais oxigenados, epóxidos, álcoois, 
cetonas, carbonilas e carboxilas. A partir de 1958, Hummers e Offeman, desenvolveram o método de síntese 
que é utilizado e adaptado até os dias atuais. No qual, o grafite é oxidado pelo tratamento com permanganato 
de potássio e nitrato de sódio em ácido sulfúrico concentrado. Recentemente nosso grupo de pesquisa 
avaliou metodologias descritas na literatura, sobre as atuais sínteses de GO e as respectivas adaptações e 
aprimoramentos ao método de Hummers. E, com base nesses relatos literários, desenvolvemos uma estratégia 
de síntese que envolvesse a logística de laboratório minimalista e que atendesse as demandadas para 
posteriores pesquisas envolvendo o GO sintetizado, o qual demonstrou bom rendimento, com métodos simples 
de purificação e tempo relativamente curto para síntese.
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INTRODUCTION

Graphene oxide (GO) consists of the derivation of graphene material, in an oxidized format, 

functionalized by carboxyl, hydroxyl, carbonyl and epoxy groups, which provide the processability of 

the material in aqueous solution. The unique properties of GO have attracted attention for its useful-

ness as an additive and performance upgrade for composites, structural reinforcement in fibers, energy 

storage devices, molecular sieves, liquid crystal optical materials (DONG et al., 2017). Due to its 2D 

structure functionalized with oxygen-containing groups, GO can be superimposed layer by layer, to 

form macroscopic films (DONG et al., 2017). In biotechnology, carbon allotropes derivatives besides its 

applications have demonstrated to be a large field for studies regarding bioactivity (VIANA et al., 2019).

In relation to production costs (use of equipment and energy for an excess of time) the most 

critical step to produce GO is purification. This stage has many warehouses for the synthesis of a final 

quality product and depends essentially on the capacities of each GO production and the equipment 

available, to carry out the processes (DIMIEV, 2016).

Purification can be carried out by long processes of washing with water and using acid (HCl) 

to remove metal ions (CHEN et al., 2016). After each wash cycle, GO is separated by generally cen-

trifuging processes. When washing and removing impurities and decreasing the acid concentration, 

the product exfoliates in single layers, characteristic for the formation of GO, generating a stable and 

bulky colloid solution. Dispersions of GO tend to obtain this gelatinous aspect whereas the value of 

pH increases during washing procedures. Solvents such as acetone can be used in this step to sup-

press the formation of this gelatinous aspect (KRISHNAN et al., 2012). Alternatively, dialysis can 

be used for purification, involving specific equipment. This protocol step increases the purification 

time of the material, also raises costs, so it is recommended only for the synthesis of small quantities 

(DIMIEV, 2016). 

In this study, experiments were carried out to determine the GO synthesis using graphite 

flakes - 100 mesh - graphite in this size range can be considered large, and therefore favors the forma-

tion of GO with an extensive size (> 10 µm), promising for the manufacture of 2D layer structures, and 

3D graphene-based networks. In those cases, GO sheets induce less interaction between them, thus 

favoring better mechanical properties. GO films also have better electrical and thermal conductivities, 

when compared to their small size (DONG, L. et al., 2017; CHEN et al., 2016). The purification step 

was based on minimalist methods both regarding to equipment and the complexity of techniques to 

be employed. This method shows to be able to result in high separation and washing efficiency. 

The Charpy-Hummers method, used in this research context, together with the graphite size 

limited to 100 mesh, with improvements in the synthesis preparation and purification protocols ac-

cording to the operating conditions of the laboratories provided by the Universidade Franciscana 

(UFN), characterize the synthesis as an efficient approach to produce GO in the laboratories of the 
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University, without high costs and encouraging the local research. The main objective was to achieve 

a trouble-free, low-cost GO preparation protocol with considerable yield of oxidized material, less 

damage to the crystalline structure and consuming minimal time, energy and easy purification.

MATERIALS AND METHODS

GO SYNTHESIS

GO can be synthesized by graphite oxidation and exfoliation. Starting from 1958, (HUMMERS 

and OFFEMAN) developed the most generic method to produce GO, which is the most used and adapt-

ed today (MARCANO, 2010). In this method, graphite is oxidized by treatment based on potassium 

permanganate and sodium nitrate solubilized in concentrated sulfuric acid (DIMIEV; TOUR, 2014; 

POH et al., 2012). The adaptation of the synthesis used in this study is based on the Charpy-Hummers 

method. The method consists of 2 steps for graphite oxidation and formation of graphene oxide (GO) 

(CHEN et al., 2019).

The first step is characterized by the slow addition of permanganate (Mn2O7 and MnO3
+) under 

the solution of sulfuric acid and graphite, in this step there is the formation of H2SO4-GIC (graphite 

intercalation compound), which is the intercalation stage from sulfuric acid through graphene sheets 

(which make up graphite), an arrangement which is necessary for the formation of PGO (pristine graph-

ite oxide), the oxidized structure of graphite (DIMIEV, 2016). This step also determines the exfoliation 

yield, which depends on the exposure time of graphite in the oxidizing solution, due to the presence of 

graphite bisulfate, qualified as responsible for the increase in exfoliation (CHEN et al., 2019).

The second oxidation step (MnO4
-) takes place during the addition of distilled water to the 

reaction system, the step is identified by increasing the thermal stability of the GO. The extension 

of this stage provides an increase in hydroxyl groups, which are thermally more stable than epoxy 

groups that make up the GO (KANG et al., 2016). However, there is a selective formation of carboxylic 

groups (~ 4.1%) and an increase in defects in the GO structure with an increase in temperature above 

70 to 95 °C (LI et al., 2018; CHEN et al., 2016). At temperatures below 45 °C, there are no significant 

changes in the structure of GO sheets (KANG et al., 2016).

All experiments had the addition of graphite in flakes (1 g), sulfuric acid (60 mL) and potas-

sium permanganate (6 g). From the syntheses carried out (alternating variables such as temperature, 

time, amount of solvent and purification) it was possible to predict the most effective method to pro-

duce GO. In operational matters, the temperature used was 40 °C, an adequate temperature to prevent 

potential deformation of the material’s crystalline structure (KANG et al., 2016).

Typical procedure (1), graphite (1 g) and 98% sulfuric acid (60 ml) were added in a beaker 

(500 ml) under magnetic stirring (150 rpm) and the solution was stirred for 30 minutes at 20 °C (A). 
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Sequentially, potassium permanganate (6 g) was added slowly, over a period of 20 minutes, maintain-

ing the temperature of the suspension at 20 °C, and stirred for another 10 minutes (B). Afterwards, the 

reaction was heated to 40 °C for different time intervals for all four experiments (C) (Table 1).

In the experiment 2, the heating was turned off after 5h and 20 mL of 98% sulfuric acid was 

added (there was the formation of a very dense liquid, the acid was added to aid in the stirring), and 

the solution was kept under stirring at room temperature for additional 1 h (D). 

In the experiment 3, after 4-5 hours of stirring, it was observed the formation of a very dense 

solution, making it difficult the stirring of the system, however no amount of acid was added in the 

next 22 h under heating (E). Then 180 ml of distilled water were dripped into the reaction system and 

maintained for an additional 1 h at 40 °C (F).

For the experiments 1 and 2, 300 mL of distilled water was used to maintain the 1:3 ratio 

(CHEN, Ji et al., 2016).

For the experiment 3, stirring was continued at room temperature for an extended time after 

adding 180 mL of distilled water (23 h), before heating (Table 1). 

Finally, for the experiment 4, 180 mL of distilled water was added, and the temperature was 

maintained at 40 ºC for 2 h (G). All The experimental reactions were completed by filling it up to 

500 mL of the beaker with distilled water at 20 °C and adding 10 mL of H2O2 to reduce Mn (VII) 

permanganate species.

Table 1 - Relevant experiments for syntheses of graphene oxide.

Experiments 1º Oxidation step 2° Oxidation step
1 5 h - 40 °C 1h - 40 °C
2 5 h - 40 °C;1 h - 25 °C (D) 1h - 40 °C
3 22 h - 40 °C (E) 23 h - 25 °C; 1h - 40 °C (F)
4 5 h - 40 °C 2h - 40 °C (G)

GO PURIFICATION

All the reactions were decanted with 2 L of distilled water 2 times to reduce the concentration 

of sulfuric acid, and then decanted with 2 L of 1:10 v/v HCl solution for removing side products, metal 

ions mostly. Reactions products 1 and 2 were again decanted with 2 L of distilled water 2-3 times and 

centrifugated, about 2-3 times at 6 hours intervals. For reactions 3 and 4, only decantation with dis-

tilled water (5 times) was used. This process was carried out only with the intention of correcting the 

pH approaching to 7 (PENG et al., 2015). Afterwards, all reaction products were dried in an oven at 

60 ° C for 24 hours (PAULCHAMY; ARTHI; LIGNESH, 2015). The GO films obtained were cutting 

and grinding for size reduction (PAULCHAMY, B., ARTHI, G., LIGNESH, B. D., 2015). The powder 

obtained were used for characterization and yield calculations.
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GRAPHENE OXIDE YIELD DETERMINATION

After the heating step, the GO was obtained in the form of a thin film, which easily became 

powder after macerating. The weight of the GO powder acquired in relation to the graphite mass used, 

considering all the losses occurred in the purification and powdering procedures of the material to 

provide the yield of the GO synthesis (YGO), so that, , where mGO is the mass of 

the dry GO powder obtained (in mg) and mGr is the mass of graphite used (in mg) (CHEN et al., 2016).

SYNTHESIS CHARACTERIZATIONS

All syntheses performed were accomplished by XRD, FTIR analyzes aiming to visualize es-

sential parameters for the formation of GO during the synthesis, with the materials and equipment 

available at UFN laboratories

Fourier transform infrared spectroscopy (FTIR) was attenuated to the main experiments to 

determine the functional groups and chemical bonds present in the samples, using the Fourier trans-

form infrared spectrometer Varian 640-IR Fourier Transform Spectroscopy Infrared South Africa. 

Bruker Optics D2 Advence USA equipment was used for the characterization using X-ray diffraction 

(XRD), in order to determine the crystalline phases of the samples and assist in proving that the 

synthesis of this study was efficient for the formation of GO.

AVERAGE SIZE OF CRYSTALLITE AND DEGREE OF CRYSTALLINITY

The average size of the crystallite (D) is related to the width of the half height of the diffracted 

peaks and the mesh parameter associated with the position of the peaks is given by Equation (1) by 

Scherrer (1939) (SCHERRER, 1939):

 (1)

Where, D is the average crystallite size, K is the constant that depends on the shape of the par-

ticles, the wavelength of the electromagnetic radiation, θ the diffraction angle and β the width of the 

peak height (FWHM). The degree of crystallinity of the samples was calculated using the reported 

method by Navarro-Pardo et al. (NAVARRO-PARDO et al., 2013):

 (2)

Ac is the área of the cristalline peaks, and Aa is the área of the amorphous cavities in the 

samples (NAVARRO-PARDO et al., 2013).
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RESULTS AND DISCUSSION

GO SYNTHESIS

The volume of sulfuric acid (60 mL) was assigned in order to ensure sufficient heat and 

mass transfer for the complete oxidation of graphite in flakes, considering 100 mesh as a large 

size graphite (CHEN et al., 2016. A). The amount of 6 g of KMnO4 was attributed to guarantee 

a complete oxidation of the precursor material in the requested time, the 3 g usually used by 

other bibliographies, for the case of this study, was consumed completely before the conversion 

of graphite into PGO, therefore, the amount of 6 g was necessary (LI et al., 2018). The additional 

hydrolysis (second oxidation step) in a 1:3 diluted sulfuric acid solution (by volume), it was found 

out to being an essential step for exfoliation of graphite oxide (GrO) into a GO (loss of the c-axis 

layer for the formation of a single layer atomic) (CHEN et al., 2016. A) (CHEN et al., 2016. B). 

Was applied for hydrolysis of sulfur species contained in the reaction medium (mainly organo-

sulfates). GO sheets can be covalently linked by organosulfates, leading to incomplete exfolia-

tion of graphite oxide (CHEN et al., 2016). The temperature of 40-50 °C was attributed to not 

compromise the GO’s crystalline structure, based on the temperature used by CHEN et al., 2019 

and also taking into account that temperatures close to 50 °C are a safe operating range for GO 

manufacturing, enabling high yield with excellent quality of the material (LI et al., 2018). The 

addition of water by dropwise for the start of the second oxidation step is essential, the sudden 

addition of water excessively increases the temperature of the reaction system, which compro-

mises the crystalline structure of the product (CHEN et al., 2019) (CHEN et al., 2016).

The x-ray diffractogram of the experiment 1 showed an incomplete oxidation of the starting 

material, which can be concluded through the DRX analysis (X-ray diffractometry) by the angle 2θ 

~ 26 °(DIMIEV; TOUR, 2014) , characteristic of remaining graphite, the DRX standard for com-

plete oxidation of the material and formation of the GO is defined by the angle 2θ ~ 10 ° (001) 

(DIMIEV; TOUR, 2014). The addition of 180 mL of water completed the first oxidation step (D), 

5 h at 40ºC and 1 h at room temperature, which was defined as insufficient time. In the experiment 

3, relatively long time was used for the first oxidation step. The graphite in contact with the oxidiz-

ing agent for an excess of time helped in the oxidation of the material, being possible to visualize 

that there was no remaining starting material, analyzed by the angle 2θ ~ 26 ° (002) (Figure 1) 

(DIMIEV; TOUR, 2014). However, it presented other signals of interference like the experiment 1, 

this due to the inefficient purification.
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Figure 1 - X-ray diffractogram of expirements.

Source: Author’s construction.

The XRD of the experiment 3, characterized by the longer reaction time, both for the first 

oxidation step (E) and during the second step (F), allowed the visualization of the complete oxida-

tion, when only the angle 2θ ~ 10° (001) was identified, characteristic for the plane of GO (Figure 1) 

(DIMIEV; TOUR, 2014). Finally, the experiment 4, the same reaction time, as for experiment 2, was 

maintained, however with the change in the second oxidation step (G), 2 h at 40 ºC. The signal around 

2θ ~ 42° (100) indicated a small distance between the graphene layers (STOBINSKI et al, 2014), in 

addition to the signal 2θ ~ 10° (001) (KAUFMANN JR, 2020).

The FTIR analyzes showed different functional groups. The most intense band identified 

around 3407 cm-1 refers to the O-H stretch, indicating the presence of functional groups OH and/

or COOH in the structure of the materials. The small band identified around 3227 cm-1 is due to the 

asymmetric or symmetrical elongation of the C-H bond. Vibrational elongation of C=O is identified 

around 1636 cm-1, the acute peak found at 1615 cm-1 is a resonance peak that can be attributed to the 

stretching and flexion of the vibration of OH groups of water molecules adsorbed in GO. The signal 

around 1381 cm-1, denotes C-OH groups. Vibrational elongation of CO alkoxy groups can also be ob-

served around 1099 cm-1, functional groups and chemical bonds that are characteristic of the oxidized 

composition of the graphene material (KHALILI, 2016) (RHODEN et al., 2017) (BERA et al., 2018).
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Figure 2 - Infrared spectrum of expirments.

Source: Author’s construction.

GO PURIFICATION

An important observation in the literature refers to the variability and complexity of the meth-

ods for purifying the synthesized GO (DIMIEV, 2016). In this work, the aim was to use low equip-

ment complexity with consequently low costs.

For all syntheses, the decantation procedure was applied. However with the use of centrifuga-

tion in experiments 1 and 2, and only decantation by gravity for experiments 3 and 4. The syntheses 

in which the centrifugation was used, required many hours (about 6 h) for separation and became 

less practicable for use on the laboratory. The performance of synthesis 1 and 2 may also have been 

compromised by the use of the centrifuge, needing several material overflows in centrifuge tubes for 

each centrifugation, and eventual loss of residual material at every step. For syntheses 3 and 4, only 

the decantation procedure was used, this method, although simple, proved to be quite viable, requir-

ing no monitoring, and relatively little separation time (average 12 h). Decantation also avoids loss of 

synthesized product, and several GO replacements are not required. The decanting method, however, 

implies that the material must be fully oxidized and exfoliated, since through decantation no further 

auxiliary exfoliation method is no longer possible - unlike the purification processes (agitation, 
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centrifugation) where it is still possible to convert GrO to GO, as well as their separation (CHEN 

et al., 2016). Thus, for experiments 3 and 4 the second oxidation step (hydrolysis) F and G was 

extended, assisting in the complete formation of GrO in GO, without requiring more complex proce-

dures, such as the use of centrifugation, or agitation during purification processes, or even the use of 

ultrasound, which can also compromise the material’s crystalline structure and compromise the final 

product (CHEN et al., 2016; DIMIEV, 2016).

GO YIELD DISCUSSION

The yield of the syntheses performed (ratio of the mass of GO obtained by the mass of graph-

ite used) was 145.7% for the synthesis 2, which does not necessarily correspond to the integral mass 

of GO, considering the interferences observed in the x-ray diffractogram. For the synthesis 3 a total 

of 1.747 g of GO was obtained, corresponding to 175% yield (attributed by the exaggerated mass of 

reagents and complete oxidation of the material). For the synthesis 4 a total of 1,698 g of GO was ob-

tained, corresponding to 169% of yield, which corresponds to the complete oxidation of the material 

and the large number of reagents used. For the synthesis 1 the yield was not considered because there 

was a lot of interference, in addition to residual graphite demonstrated in the analysis of the diffracto-

gram, not certifying fidelity in the result.

The synthesis also showed relatively higher yields compared to several methods reported in the 

literature, for example, considering the synthesis of CHEN et al., 2016. A., (the highest yield of the ref-

erenced articles) which presented a value of 152% in its synthesis using small size high quality graphite.

AVERAGE SIZE OF CRYSTALLITE AND DEGREE OF CRYSTALLINITY

The degree of crystallinity of the experiments decreased as the oxidation steps lasted longer 

(mainly the second oxidation step), this fact is explained by the temperature used (40ºC), since it 

proved to be safe for the production of high quality GOs, however causing damages in the crystal-

line structure of the materials (CHEN et al, 2019), see Table 2. It is important to point out that GO 

crystallinity also influenced by exposure time to different oxidative species (MnO3
+ and MnO4

-) in a 

concentrated sulfuric acid solution (JALILI et al., 2014).

Table 2 - Degree of crystallinity of the samples and average crystallite size.

Synthesis Degree of crystallinity (%) Average size of crystallite (nm)
1 85.82 8.92
2 69.40 8.77
3 68.62 14.45
4 52.06 7.43
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The use of graphite in flakes as a starting material for the synthesis of GO requires a longer 

time of oxidation and chemical exfoliation during the synthesis. Since this precursor material has 

a high size, this interferes directly with the average crystallite dimension of the obtained materials 

(SHOJAEENEZHAD; FARBOD; KAZEMINEZHAD, 2017). Synthesis 1 presented the smallest av-

erage crystallite size, in addition to an impure product, since the oxidation steps comparing with the 

oxidation steps employed in the other experiments. In synthesis 3, however, even with high oxidation 

times, the product presented the largest size, in addition to a pure material as observed in the X-ray 

diffractogram.

CONCLUSION

An extremely simple method of producing graphene oxide has been developed, with minimal 

energy expenditure, and ensuring complete oxidation of the material and exfoliation - only during 

the synthesis process for the GO formation. The synthesis reported in this work showed a 175% yield, 

furnishing a very high quality graphene oxide from a low-quality graphite as a starting material. The 

highlight of this methodology is its simplicity, low energy and logistical costs, efficiency, and quality 

of the final synthesized material. This material shown to be suitable for further biological as well as 

material applications.
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