MATEMÁTICA FINANCEIRA E MODELAGEM MATEMÁTICA: CONSTRUÇÃO DE MODELOS RELACIONADOS AO ORÇAMENTO FAMILIAR E SISTEMAS DE FINANCIAMENTO¹

FINANCIAL MATHEMATICS AND MATHEMATICAL MODELING: CONSTRUCTION OF MODELS RELATED TO THE FAMILY BUDGET AND FINANCING SYSTEMS

Marciana Pegoraro² e Leandra Anversa Fioreze³

RESUMO

A modelagem matemática consiste na arte de trasformar problemas da realidade (inicialmente, não matemáticos) em problemas matemáticos. Neste trabalho utiliza-se a metodologia da modelagem matemática como estratégia para o ensino de Matemática financeira. Foram construídos modelos matemáticos relacionado a sistemas de financiamento e a um orçamento familiar, para mostrar como a modelagem matemática pode ser usada em qualquer situação do cotidiano, podendo tornar mais agradável e atraente o processo ensino-aprendizagem de Matemática.

Palavras-chave: modelagem matemática, sistemas de financiamento, orçamento familiar.

ABSTRACT

The Modeling Mathematics is the art of trasformar problems of reality (a principle, not mathematicians) in mathematical problems. This paper uses up the methodology of modeling Mathematics as a strategy for the teaching of Mathematics Financial. They were constructed mathematical models related to financing systems and a household budget, to show how the Mathematical Modeling can be used in any situation of daily life can make it more pleasant and attractive the teaching-learning process of mathematics.

Keywords: modelling mathematics, system of financing, family budget.

¹ Trabalho de Iniciação Científica- PROADIS - UNIFRA.

² Acadêmica do Curso de Matemática - UNIFRA.

³ Orientadora – UNIFRA.

INTRODUÇÃO

O objetivo neste trabalho é a construção de modelos matemáticos que tenham como ponto de partida situações cotidianas, relacionados a rendas e sistemas de financiamento.

A Matemática financeira está presente na grande maioria das operações financeiras, sendo que qualquer cidadão a utiliza, mesmo que seja inconscientemente.

Com a complexidade das operações financeiras e a grande variedade de formas diferentes de efetuar aplicações e conseguir recursos, há a necessidade de agilidade e conhecimento financeiro para proporcionar ganhos e evitar gastos desnecessários, que comprometam a saúde financeira pessoal e empresarial, bem como obter um melhor resultado financeiro.

A Matemática financeira é um recurso útil na análise de algumas alternativas de investimento de bens de consumo. Há alguns poucos anos, só se resolviam problemas financeiros com o auxílio de tabelas. Com o advento das calculadoras portáteis, a princípio científicas, mas cada vez mais avançadas, as tabelas cederam a fórmulas que, se forem compreendidas na sua origem e dedução, serão utilizadas de forma cada vez mais natural, sem a necessidade de memorização de muitas delas.

Neste trabalho, foram construídos modelos matemáticos referentes a um orçamento familiar e a um financiamento, levando-se em consideração as informações obtidas em pesquisas bibliográficas sobre este assunto.

METODOLOGIA DA MODELAGEM MATEMÁTICA

A modelagem matemática, no Brasil, começou a ser trabalhada, na década de 80, na Universidade Estadual de Campinas-UNICAMP, com um grupo de professores, em Biomatemática, coordenada pelo professor Dr. Rodney Carlos Bassanezi. Inicialmente, os estudos envolviam modelos de crescimento cancerígenos (BASSANEZI, 2002).

Na educação brasileira, a modelagem matemática teve início em 1983, com os cursos de especialização para professores na Faculdade de Filosofia Ciências e Letras de Guarapuava (FAFIG), hoje Universidade Estadual do Centro-oeste -UNICENTRO.

As vantagens do emprego da modelagem matemática, em termos de pesquisa, podem ser constatadas nos avanços obtidos em vários campos como a Física, a Química, a Biologia e a Astrofísica entre outros. A modelagem pressupõe multidisciplinaridade. Nesse sentido, vai ao encontro das novas tendências que apontam para a renovação de fronteiras entre as diversas áreas de pesquisa.

Uma das alternativas que viabiliza a interação da Matemática com a realidade é a modelagem matemática, pois esta permite criar um ambiente de aprendizagem em que alunos e professores podem discutir e questionar fenômenos (naturais, sociais, culturais e políticos) por meio da Matemática, ou seja, tornar visível o papel da Matemática na vida social. Desse modo, a modelagem matemática, como alternativa pedagógica, não é mais, unicamente, do professor para o aluno, mas ocorrerá na interação entre o aluno, o professor e o ambiente em que vivem.

A modelagem matemática, utilizada como estratégia de ensinoaprendizagem, é um dos caminhos para tornar um Curso de Matemática, em qualquer nível, mais atraente e agradável. Uma modelagem eficiente permite fazer previsões, tomar decisões, explicar e entender, enfim, participar do mundo real com capacidade de influenciar em suas mudanças, podendo levar o educando a compreender melhor os argumentos matemáticos, construindo conceitos e resultados de modo mais significativo.

No caso específico da Matemática, é necessário buscar estratégias e alternativas de ensino-aprendizagem que facilitem sua compreensão e utilização. A modelagem matemática, em seus vários aspectos, é um processo que alia teoria e prática, motiva seu usuário na procura do entendimento da realidade que o cerca e na busca de meios para agir sobre ela e transformá-la. De fato, a modelagem matemática transforma problemas da realidade em problemas matemáticos e interpreta suas soluções na linguagem da vida real.

A modelagem matemática rompe com a forma usual de se trabalhar o ensino de Matemática na escola. Entretanto, essa forma diferenciada de trabalho pode se constituir em motivo de preocupação entre os professores, já que, muitas vezes, é necessário compatibilizar o conteúdo conhecido para determinada série, que se apresenta logicamente ordenado com a proposta da modelagem que preconiza o problema como determinante do conteúdo.

Dessa forma, a adoção da modelagem matemática, como uma alternativa metodológica para o ensino de Matemática, pretende contribuir para que, gradativamente, se supere o tratamento estanque e compartimentalizado que tem caracterizado o seu ensino, pois, na aplicação dessa metodologia, um conteúdo matemático pode se repetir várias vezes no transcorrer do conjunto das atividades em momentos e situações distintas. Um mesmo conteúdo pode ser abordado diversas vezes, no contexto de um tema e em situações distintas, favorecendo significativamente, a compreensão das idéias fundamentais, podendo contribuir de forma significativa para a percepção da importância da Matemática do cotidiano da vida de cada cidadão, seja ele ou não matemático.

ETAPAS PARA A REALIZAÇÃO DA MODELAGEM MATEMÁTICA COMO MÉTODO DE ENSINO

Para a realização das atividades propostas, foram seguidas as etapas descritas por Burak (2004) para a utilização da metodologia de modelagem matemática: escolha de tema, pesquisa exploratória, levantamento dos problemas, resolução do(s) problema(s) e o desenvolvimento da Matemática relacionada ao tema, e análise crítica da (s) solução (es).

Num primeiro momento, fez-se um levantamento de possíveis situações de estudo, as quais devem ser, preferencialmente, abrangentes para que possam propiciar questionamentos em várias direções. Passada a fase inicial, na qual a ênfase foi dada à pesquisa, passa-se para a discussão do tema, em que todos os alunos devem ter a oportunidade de expor seus conhecimentos, suas idéias e opiniões.

Uma vez escolhido o tema, o próximo passo é buscar informações relacionadas ao assunto. A coleta de dados qualitativos ou numéricos pode ser efetuada em entrevistas e pesquisas executadas com os métodos de amostragem, de pesquisa bibliográfica, utilizando dados já obtidos e catalogados em livros e revistas especializadas.

Na terceira etapa, trabalha-se a problematização ou formulação dos problemas que devem ser explicitados de forma clara, compreensível e operacional. Dessa forma, um problema se constitui em uma pergunta científica, quando explica a relação entre as variáveis ou fatos envolvidos no fenômeno.

Enquanto que a escolha do tema de uma pesquisa pode ser uma proposta abrangente, a formulação de um problema é mais específica e indica exatamente o que se pretende resolver. O objetivo principal desse momento do processo de modelar é chegar a um conjunto de expressões aritméticas, fórmulas, questões algébricas, gráficos, representações, programas computacionais, que levem à solução ou permitam a dedução de uma solução.

Os problemas elaborados, com base nos dados coletados, determinarão os conteúdos a serem trabalhados. Além de aplicar conhecimentos já adquiridos, como tradicionalmente tem sido assinalado, há a possibilidade de os alunos adquirirem novos conhecimentos durante o próprio trabalho de modelagem (TARP, 2001). Dessa forma, ganha sentido e significado cada conteúdo matemático usado na busca da solução do problema ou dos problemas. É nessa etapa que se oportuniza a construção dos modelos matemáticos que, embora simples, se constituem em momentos privilegiados e ricos para a formação do pensar matemático.

Uma vez formulada a situação-problema, passa-se à resolução ou análise com o recurso matemático que se dispõe. O computador pode

ser um instrumento imprescindível, especialmente, em situações em que não foi possível resolvê-la por processos contínuos, obtendo-se resultados aproximados por processos discretos (BIEMBENGUT, 2003).

Na última etapa, é necessário fazer uma avaliação para verificar em que nível ele se aproxima da situação representada e ainda verificar o grau de confiabilidade na sua utilização, ou seja, se o modelo permite seu uso para outras situações análogas. Se o problema não atender às necessidades que o geraram, o processo deve ser retomado na terceira etapa, mudando-se ou ajustando a sua formulação.

Nessa perspectiva, a modelagem, como uma alternativa pedagógica para o ensino de Matemática, vem ao encontro das expectativas dos estudantes, pois procura oferecer a interação com o seu meio ambiente, uma vez que tem o ponto de partida no cotidiano do aluno. Quando o aluno vê sentido naquilo que estuda, em função da satisfação das suas necessidades e de seus interesses, da realização dos seus objetivos, não haverá desinteresse, pois trabalha com entusiasmo e perseverança. Esse interesse é importante, pois dá inicio à formação de atitudes positivas em relação à matemática (BURAK, 2004).

ORÇAMENTO FAMILIAR E FINANCIAMENTO

Destaca-se, neste trabalho, um problema relacionado a um orçamento familiar e outro relacionado a um financiamento.

ORÇAMENTO FAMILIAR

Considera-se uma família cuja renda mensal r_n é proveniente de um salário fixo r_o , mais o rendimento da caderneta de poupança p_n do mês anterior. Suponha também que o consumo mensal c_n desta família seja proporcional à sua renda mensal.

Solução 5

O modelo que estabelece relações entre as variáveis, renda, poupança e consumo dependentes do tempo, tomados em meses, é dado por:

1°) poupança: (poupança do mês anterior n) + (sobra do mês n+1)

$$p_{n+1} = p_n + (r_{n+1} - c_{n+1})$$
 (1)

2º) renda: (salário) + (rendimento da poupança do mês anterior)

$$r_{n+1} = r_0 + \alpha p_n \tag{2}$$

em que α é o juro da poupança.

3°) consumo:

$$c_{n+1} = \beta r_{n+1}$$
 $(0 \le \beta \le 1)$ (3)

em que o consumo é proporcional a renda pelo coeficiente β definido no intervalo acima.

Usando as três equações, pode-se escrever:

$$\begin{split} &p_{n+1} = p_n + \left(r_{n+1} - c_{n+1}\right) \\ &p_{n+1} = p_n + \left(r_0 + \alpha p_n - \beta r_{n+1}\right) \\ &p_{n+1} = p_n + \left(r_0 + \alpha p_n - \beta (r_0 + \alpha p_n)\right) \\ &p_{n+1} = p_n + r_0 + \alpha p_n - \beta r_0 - \beta \alpha p_n \\ &p_{n+1} = (1 - \beta)r_0 + p_n (1 + \alpha - \beta \alpha) \\ &p_{n+1} = (1 - \beta)r_0 + (1 + \alpha (1 - \beta))p_n \end{split}$$

Considerando que p_o é dado, as soluções são dadas por:

$$\begin{split} & p_1 = (1 - \beta)r_0 + [1 + \alpha(1 - \beta)]p_0 \\ & p_2 = (1 - \beta)r_0 + [1 + \alpha(1 - \beta)]p_1 \\ & = (1 - \beta)r_0 + [1 + \alpha(1 - \beta)][(1 - \beta)r_0 + [1 + \alpha(1 - \beta)]p_0] \\ & = (1 - \beta)r_0 + (1 - \beta)r_0 + ((1 - \beta)\alpha + 1) + ((1 - \beta)\alpha + 1)^2p_0 \\ & = (1 - \beta)r_0 [1 + ((1 - \beta)\alpha + 1)] + ((1 - \beta)\alpha + 1)^2p_0 \\ & p_3 = (1 - \beta)r_0 + [1 + \alpha(1 - \beta)]p_2 \\ & = (1 - \beta)r_0 + [1 + \alpha(1 - \beta)][(1 - \beta)r_0 [1 + ((1 - \beta)\alpha + 1)] + ((1 - \beta)\alpha + 1)^2p_0] \\ & = (1 - \beta)r_0 + [(1 - \beta)\alpha + 1)(1 - \beta)r_0] + [((1 - \beta)r_0((1 - \beta)\alpha + 1)((1 - \beta)\alpha + 1)] + [((1 - \beta)\alpha + 1)((1 - \beta)\alpha + 1)^2] \\ & p_3 = (1 - \beta)r_0 [1 + ((1 - \beta)\alpha + 1) + ((1 - \beta)\alpha + 1)^2] + [(1 - \beta)\alpha + 1)^3p_0] \end{split}$$

Pode-se observar que os termos entre colchetes à esquerda na expressão acima representam a soma dos termos uma progressão geométrica com primeiro termo igual a 1 e razão igual a $(1 - \beta)\alpha + 1$. Então, pode-se mostrar que p_n será dado por:

$$p_n = p_0 a^n + b \frac{1 - a^n}{1 - a}$$

onde
$$a = (1 - \beta)\alpha + 1$$
 e $b = (1 - \beta)r_0$

Então:

$$p_{n} = [(1 - \beta)\alpha + 1]^{n} p_{0} + (1 - \beta)r_{0} \frac{1 - [(1 - \beta)\alpha + 1]^{n}}{1 - [(1 - \beta)\alpha + 1]}$$
em que $n \in \mathbb{N}^{*}$. (4)

Para encontrar r_n, basta substituir a equação (4) em (2), logo:

$$r_n = r_0 + \alpha p_0 a^n + \alpha b \frac{1 - a^{n-1}}{1 - a}$$
 (5)

E para encontrar c_n , basta substituir (5) em (3).

Por exemplo, considera-se uma situação em que uma família tem um salário inicial de R\$5000,00, consome, mensalmente 80% da renda e aplica na poupança a uma taxa de juros de 1% ao mês, ou seja:

$$r_0 = R$$
\$ 5000,00 , $\beta = 0.8$ e $\alpha = 1\%$.

Como c $_{\rm 0}$ é dado por c $_{\rm 0}$ = $\beta.$ $r_{\rm 0}$,então c $_{\rm 0}$ = R\$ 4000,00 e p $_{\rm 0}$ = R\$ 1000,00.

Para n = 10, p_{10} será dado por:

$$p_{n} = [(1 - \beta)\alpha + 1]^{n} p_{0} + (1 - \beta)r_{0} \frac{1 - [(1 - \beta)\alpha + 1]^{n}}{1 - [(1 - \beta)\alpha + 1]}$$

$$p_{10} = [(1 - 0.8).0,01 + 1]^{10}.1000 + (1 - 0.8).5000 \frac{1 - [(1 - 0.8).0,01 + 1]^{10}}{1 - [(1 - 0.8).0,01 + 1]}$$

$$p_{10} = 11110,66$$

Ou seja, considerando n = 10 meses, uma família que possui uma renda inicial de R\$5.000,00, economiza 20% de sua renda, mensalmente, terá então um montante de R\$11.110,66.

FINANCIAMENTO

Na compra de uma casa é feito um financiamento de valor c_o que deve ser pago em n meses, em parcelas mensais fixas iguais a k. Deve-se determinar a taxa de juros mensal cobrado nesse empreendimento.

Seja c_0 a dívida inicial, então, a dívida c_n no mês n é dada pela dívida corrigida no mês anterior menos a parcela paga no mês e α é o juro fixo, ou seja,

$$c_n + 1 = c_n + \alpha$$
 $c_n - k = (1 + \alpha)c_n - k$ (6)

Pode-se encontrar a solução de (6) por recorrência:

$$\begin{split} c_1 &= (1+\alpha)c_0 - k \\ c_2 &= (1+\alpha)c_1 - k \\ &= (1+\alpha)\left[(1+\alpha)c_0 - k\right] - k \\ &= (1+\alpha)^2c_0 - (1+\alpha)k - k \\ &= (1+\alpha)^2c_0 - k[1+(1-\alpha)] \\ c_3 &= (1+\alpha)c_2 - k \\ &= (1+\alpha)[(1+\alpha)^2c_0 - (1+\alpha)k - k] - k \\ &= (1+\alpha)^3c_0 - (1+\alpha)^2k - (1+\alpha)k - k \\ &= (1+\alpha)^3c_0 - k\left[1+(1+\alpha)+(1+\alpha)^2\right] \\ \cdot \\ \cdot \\ c_n &= (1+\alpha)^nc_0 - k\left[1+(1+\alpha)+...+(1+\alpha)^{n+1}\right] \end{split}$$

Os termos entre colchetes representam uma progressão geométrica, em que o primeiro termo é 1 e a razão é $(1 + \alpha)$. Logo,

$$c_n = (1 + \alpha)^n c_0 - k$$

$$\left[\frac{1 - (1 + \alpha)^n}{-\alpha} \right]$$
 (7)

Nota-se que a taxa de juros cobrada não está explícita. Se for considerado que a dívida estará quitada em t meses, deve-se ter em (7) que $c_{t'}$ logo:

$$(1 + \alpha)^n c_0 = K \frac{1 - (1 + \alpha)^t}{-\alpha}$$

ou:

$$\frac{\alpha c_0}{k} = \frac{(1 - \alpha)^t - 1}{(1 - \alpha)^t} = 1 - \frac{1}{(1 - \alpha)^t}$$

Conhecidos os valores da dívida inicial $c_{o'}$ do pagamento parcelado k e do tempo necessário t para a liquidação desta dívida, o cálculo de α pode ser feito, usando-se algum método numérico. Por exemplo, seja um valor financiado no valor de c_{o} = 30.000, parcelas mensais de k=500 e t =15 anos (180 meses). Então, tem-se:

$$60 \alpha = 1 - \frac{1}{(1 - \alpha)^{180}}$$
 (8)

Para obter o valor de α em (8), será usado o método da bisseção (MARTINS, 2005). Este método é um dos mais simples para calcular raízes reais de uma equação não linear.

Sejam y =
$$60\alpha$$
 e
 $Z = 1 - \frac{1}{(1 - \alpha)^{180}}$

Deve-se encontrar α de modo que y = z. Considerando:

•
$$\alpha = 0.01 \Rightarrow y = 60 \cdot 0.01 = 0.6 \text{ e } z = 1 - 1 = 0.833 \Rightarrow z > y$$

•
$$\alpha = 0.02 \Rightarrow y = 1.2 \text{ e } z = 0.97 \Rightarrow z < y$$

•
$$\alpha = 0.01 + 0.02 = 0.015 \Rightarrow y = 0.9 \text{ e } z = 0.93 \Rightarrow z > y$$

Então α deve estar entre 0.015 e 0.02. Continuando os cálculos, obtém-se $\alpha \equiv 0.0156$ ou 1.56% ao mês.

CONCLUSÃO

Trabalhar com modelagem matemática é bastante gratificante, pois relaciona a teoria (conteúdo matemático) e as necessidades relacionadas à realidade. Renda, poupança e consumo são capitais e saber lidar com estes capitais é muito importante. A Matemática financeira é de extrema importância para a tomada de decisões financeiras, tanto de caráter pessoal quanto empresarial, auxiliando no processo de maximização dos resultados.

Ao se aplicar a modelagem matemática como um método de ensino- aprendizagem nos problemas citados, pôde-se tornar o estudo mais atraente e agradável e dar início à formação de atitudes positivas em relação à Matemática e à própria Matemática financeira.

REFERÊNCIAS

BASSANEZI, R. C. Ensino-aprendizagem com modelagem matemática: uma nova estratégia. São Paulo: Contexto, 2002.

BIEMBENGUT, Maria Salett; HEIN, Nelson. **Modelagem matemática no ensino**. 2. ed. São Paulo: Contexto, 2002.

BURAK, Dioísio. **Modelagem Matemática e a sala de aula.** In: ENCONTRO PARANAENSE DE MODELAGEM EM EDUCAÇÃO MATEMÁTICA, 1., 2004, Londrina. **Anais**... Londrina: UEL, 2004. 1 CD-ROM.

MARTINS, **A. Resolução numérica de equações.** 2005. Disponível em: http://www.unifra.br/unifranet/Admin/arquivos/Normas_UNIFRA vfinal7.pdf. Acesso em: 10 dez. 2007.

TARP, A. Mathematics before or through applications: Top – down and bottom-up understandings of linear and exponential functions. In: MATOS, J. F. et al. (Eds) **Modelling end mathematics education.** Chichester: Ellis Horwood, 2001. p.119-129.

VERAS, Lilia Ladeira. **Matemática Financeira**. 4. ed. São Paulo: Atlas, 2001.