APROVEITAMENTO DA ÁGUA DE CHUVA EM ESCOLA MUNICIPAL DE SANTA MARIA-RS¹

RAINWATER CATCHMENT IN MUNICIPAL SCHOOL OF SANTA MARIA-RS

Rafael Zini Ouriques², Angelo Schneider³, Maria Isabel Pimenta Lopes⁴ e Lidiane Bittencourt Barroso⁵

RESUMO

Neste trabalho, propôs-se o aproveitamento da água de chuva na Escola Municipal João Pedro Menna Barreto, em Santa Maria-RS. No pré-dimensionamento do sistema de captação da água de chuva se fez necessário conhecer: a precipitação média anual e as áreas de contribuição dos telhados; permitindo obter a capacidade de captação e o volume da cisterna. Sendo 1461,50 mm, a precipitação média anual e 293,30 m², a área de contribuição dos telhados, estimou-se a capacidade de captação igual a 32,15 m³/mês. Para a utilização da água de chuva nos vasos sanitários desta escola, a cisterna deve ter 8,27 m³, considerando um período de estiagem de 15 dias. Contudo, se for aproveitada toda a capacidade de captação da água de chuva, em outros usos não-potáveis, ter-se-ia uma redução média de até 60% do consumo de água tratada. Concluí-se que o aproveitamento da água de chuva é de vital importância, podendo representar uma redução de gastos expressiva com a utilização deste recurso ainda sem valor comercial.

Palavras-chave: água pluvial, intensidade pluviométrica, área de contribuição.

ABSTRACT

In this work, it was proposed the rainwater catchment at the Municipal School João Pedro Menna Barreto, in Santa Maria-RS. Before establish the size of the captation system, it was necessary to know: the annual average precipitation and the contribution areas of the roof, which permitted calculate the capacity of captation and the volume of the cistern. The annual

¹ Trabalho de Iniciação Científica – PROBIC.

² Acadêmico do Curso de Engenharia Ambiental – UNIFRA. E-mail: rafael_zini@yahoo.com.br

³ Acadêmico do Curso de Engenharia Ambiental – UNIFRA. E-mail: angelosch@yahoo.com.br

⁴ Orientadora – UNIFRA. E-mail: miplopes@unifra.br

⁵ Orientadora – UNIFRA. E-mail: lidianebarroso@unifra.br

average precipitation is about 1461,50 mm and the contribution areas of the roof is 293,30 m², so the rainwater captation was of 32,15 m³/month. To use rainwater in sanitary vases, the cistern must have 8,27 m³, considering a dry period of 15 days. However, if all the potential rainwater captation can be used for non-potable purposes, it would be possible to reduce until 60% of the consumption of treated water. It is concluded that the rainwater catchment is of vital importance, and may represent a significant reduction in costs, even though at this moment does not have any commercial value.

Keywords: pluvial water, pluviometric intensity, contribution area.

INTRODUÇÃO

O acesso à água potável é uma necessidade humana fundamental e, assim, um direito básico, de acordo com a Lei nº 9.433 (BRASIL, 1997). Não se consegue imaginar vida sem água, pois ela é utilizada para beber, produzir e preparar alimentos, entre outros fins tão essenciais para a sobrevivência.

Em decorrência do aumento expressivo da perda da qualidade da água, a captação da água de chuva em ambientes urbanos é uma alternativa em constante crescimento, e um assunto de interesse cada vez maior diante das múltiplas vantagens de sua adoção. A importância da sensibilização da população, na utilização racional da água tratada, incentivando o uso da água de chuva para fins não-potáveis, é uma das maneiras para minimizar a escassez de água potável.

A água de chuva serve principalmente para usos não-potáveis, pois para assegurar sua potabilidade, é recomendável um tratamento mais complexo, sendo uma alternativa viável apenas onde não há a possibilidade de abastecimento com água tratada. Pode-se substituir a água tratada potável da rede pública em diversas aplicações, tais como vasos sanitários, máquinas de lavar, irrigação de jardins, lavagens de carro, limpeza de pisos e piscinas. Também o vaso sanitário é um dos equipamentos de maior consumo de água, correspondendo a 30,9%, de acordo com Yoshimoto e Silva (2005).

O uso da água para fins não-potáveis em estabelecimentos comerciais, como escolas, prédios públicos e mesmo em indústrias, pode responder por mais de 50% do consumo. É necessária uma inspeção cuidadosa no local para uma avaliação precisa. A utilização das águas pluviais classifica-se por graus de pureza, de acordo com os locais de sua coleta, segundo Fendrich (2002).

Neste trabalho, foi proposto o aproveitamento da água de chuva em escola municipal de Santa Maria-RS. Para isso, foi necessária aconcepção das instalações prediais de águas pluviais e a identificação dos possíveis usos não-potáveis.

MATERIAIS E MÉTODOS

ESTUDO DE CASO

Este trabalho foi desenvolvido na Escola Municipal João Pedro Menna Barreto (Figura 1), localizada no Município de Santa Maria-RS. O trabalho é parte integrante do Projeto Tecnologias para Sustentabilidade da Água em Zonas Rurais e Urbanas – TEC-ÁGUA, do Centro Universitário Franciscano – UNIFRA.

Durante a realização deste trabalho, a escola possuía 418 alunos e 27 funcionários, distribuídos em dois turnos. Os dados do consumo medido, apresentados na figura 2, foram obtidos na Companhia Riograndense de Saneamento – CORSAN.

Figura 1. Fachada frontal da escola e vista dos prédios em estudo.

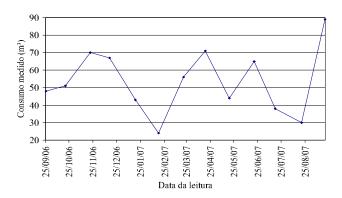


Figura 2. Faturamento – leituras e consumo da escola (CORSAN, 2007).

INSTALAÇÕES PREDIAIS DE ÁGUAS PLUVIAIS

Na concepção das instalações prediais de águas pluviais, fez-se necessário conhecer o fator meteorológico e as áreas de contribuição dos telhados para o pré-dimensionamento das calhas e dos condutores. O projeto executivo e financeiro não fez parte do escopo deste trabalho.

O fator meteorológico foi obtido através da equação (1), com os parâmetros do programa Plúvio 2.1, desenvolvido por Pruski et al. (2006).

$$I = \frac{870, 38 \cdot T^{0,24}}{(t+15,2)^{0,73}} \tag{1}$$

em que: I = intensidade pluviométrica, mm/h; T = período de retorno, anos; t = duração da precipitação, minutos.

A partir das medições e observações na escola, nos dois prédios escolhidos (Figura 3), foram obtidas as respectivas larguras (a), comprimentos (b) e alturas das tesouras (h); estas últimas calculadas a partir dos 15% de declividade do telhado. Esses foram os parâmetros para a determinação das áreas de contribuição, conforme figura 4 e equação (2).

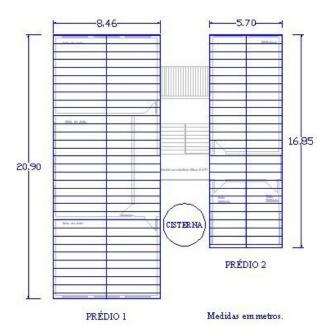


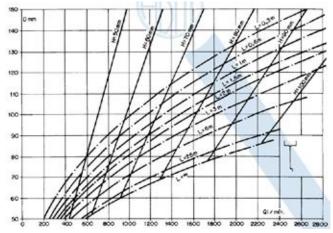
Figura 3. Planta de telhado dos prédios 1 e 2.

Figura 4. Indicação para cálculo da área de contribuição, NBR 10844 (ABNT, 1989).

$$A = \left(a + \frac{h}{2}\right) \cdot b \,, \tag{2}$$

em que: A =área de contribuição, m^2 ; a =largura, m; h =altura da tesoura, m; e b =comprimento, m.

Segundo a NBR 10844 (ABNT, 1989), a vazão de projeto (Q, L/min) para o pré-dimensionamento de calhas e condutores calcula-se pela equação (3):


$$Q = \frac{I \cdot A}{60} \,, \tag{3}$$

A tabela 1 fornece as capacidades de calhas semicirculares, usando coeficiente de rugosidade n = 0,011, para alguns valores de declividades usuais. Os valores foram calculados utilizando a equação de Manning-Strickler, com lâmina de água igual à metade do diâmetro. Observa-se que devem ser adotadas aquelas seções com capacidade de escoamento igual ou superior à vazão de projeto, esta calculada pela equação (3).

Tabela 1. Capacidade de calhas semicirculares.

D (mm)		Declividades (%)	
D (mm)	0,5	1,0	2,0
100	130	183	256
125	236	333	466
150	384	541	757
200	829	1167	1634

O diâmetro interno (D, mm) dos condutores verticais foi obtido através do ábaco, da figura 5, em que: Q = vazão de projeto, L/min, da equação (3); H = altura da lâmina de água na calha, mm; L = comprimento do condutor vertical, m. Para uso do ábaco: levanta-se uma vertical por Q até interceptar as curvas H e L correspondentes. No caso de não haver curvas dos valores de H e L, interpolase entre as curvas existentes. Após, transporta-se a interseção mais alta até o eixo D. Adota-se o diâmetro nominal cujo valor igual ou superior a 70 mm, sendo este o diâmetro interno mínimo recomendado pela NBR 10844 (ABNT, 1989).

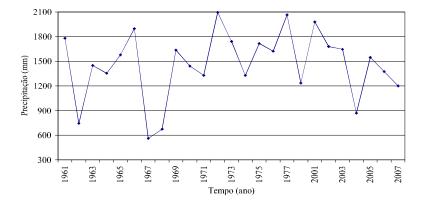


Figura 5. Ábaco para a determinação de diâmetros de condutores verticais, NBR 10844 (ABNT, 1989).

CAPACIDADE DE CAPTAÇÃO DE ÁGUA DE CHUVA

Para o pré-dimensionamento do sistema de captação da água de chuva, fez-se necessário conhecer a precipitação pluviométrica média anual e as áreas de contribuição dos telhados (equação (2)); permitindo obter a capacidade de captação e o volume da cisterna.

A precipitação pluviométrica média anual foi obtida pelo Sistema de Monitoramento Agrometeorológico - AGRITEMPO (2007). A figura 6 é a representação gráfica dos totais de precipitação em Santa Maria-RS, nos anos de 1961 a 1978 e 2001 a 2007.

Figura 6. Precipitação pluviométrica média anual em Santa Maria-RS. Fonte: http://www.agritempo.gov.br/agroclima/sumario

A capacidade de captação, calculada conforme da tabela 2, do Sistema de Captação e Reaproveitamento da Água de Chuva – Acqua Save (2007). Os resultados desta tabela 2 representam a multiplicação da precipitação anual com área de contribuição do telhado, com a redução de 10%; que corresponde à água necessária à limpeza das instalações prediais de águas pluviais.

Tabela 2. Capacidade de captação (m³/ano).

Precipitação (mm) anual	Área de contribuição do telhado (m²)							
Frecipitação (min) anuai	100	200	300	400	500	1000	1500	2000
800	72	144	216	288	360	720	1080	1440
1000	90	180	270	360	450	900	1350	1800
1200	108	216	324	432	540	1080	1620	2160
1400	126	252	378	504	630	1260	1890	2520
1600	144	288	432	576	720	1440	2160	2880

Fonte: Adaptado de http://www.acquasave.com.br/acqua/index acqua.php3

Para determinar o volume da cisterna, considerando um período de estiagem de 15 dias, primeiro, somaram-se os volumes de uso de água para fins não-potáveis. Neste trabalho foi considerado apenas o consumo nas descargas dos vasos sanitários. Segundo, dividiu-se por dois, equivalente aos 15 dias; assim tem-se o volume ideal da cisterna. Deve-se verificar se o volume de captação é suficiente para este uso. A capacidade de captação mensal deve ser o dobro do volume encontrado para a cisterna, a fim de que o sistema seja eficiente.

RESULTADOS E DISCUSSÃO

Embora a utilização da água seja variável e dependente do clima, do poder econômico e dos hábitos da população, foi considerada a média aritmética dos dados de consumo medido da figura 2 igual a 53,50 m³/mês. Dessa maneira, foi atribuído 16,53 m³/mês ao consumo provável nas descargas dos vasos sanitários, correspondente aos 30,9%, recomendados na literatura.

A intensidade pluviométrica foi de 142,74 mm/h, calculada pela equação (1), sendo adotados: T=5 anos; t=5 minutos; valores característicos para a captação de água em telhados.

As áreas de contribuição dos telhados foram calculadas pela equação (2), a partir de dados medidos e observados dos dois prédios escolhidos, apresentadas na tabela 3.

Tabela 3. Áreas de contribuição dos telhados.

	Prédio 1	Prédio 2	
Área de contribuição (A), m ²	95,00	51,65	
Área de contribuição subtotal, m ²	190,00	103,30	
Área de contribuição total, m ²	293,30		

Para o pré-dimensionamento das calhas semicirculares pela tabela 1, para o prédio 1, em cada água do telhado, podem ser utilizadas calhas de 125 mm para escoar a vazão do projeto de 226,01 L/min; e no prédio 2, de 100 mm, para 122,88 L/min. Foi adotada para todas as calhas a declividade de 0,5%, mínimo necessário para o escoamento das águas pluviais. As seções das calhas foram as que melhor se adaptaram às vazões de projeto calculadas.

Com a área de contribuição subtotal dos telhados de cada prédio: 190,00 m² e 103,30 m²; as vazões totais correspondem a 452,02 L/min e 245,76 L/min; essas vazões de projeto são utilizadas no pré-dimensionamento dos condutores verticais.

O diâmetro dos condutores verticais foi o mínimo recomendado pela NBR 10844 (ABNT, 1989), pois a interpolação dos dados ficou fora do ábaco da figura 5. Isto é, o diâmetro interno foi de 70 mm, sendo um condutor para cada calha, portanto totalizando quatro condutores verticais de, aproximadamente, 6,0 m de comprimento.

Sendo 1461,50 mm a precipitação pluviométrica média anual de Santa Maria, nos anos de 1961 a 1978 e 2001 a 2007 (Figura 6); e 293,30 m² a área de contribuição total dos telhados, estimarou-se a capacidade de captação igual a 385,79 m³/ano, ou seja, 32,15 m³/mês, de acordo com a metodologia da tabela 2.

Para a utilização da água de chuva, nos vasos sanitários desta escola, a cisterna deve ter 8,27 m³, ou seja, metade do consumo provável atribuído às descargas, considerando um período de estiagem de 15 dias. Contudo, se for aproveitada toda a capacidade de captação de água de chuva, os 32,15 m³/mês, em outros usos não-potáveis, ter-se-ia uma redução média de até 60% do consumo médio de água tratada correspondente a 53,50 m³.

CONSIDERAÇÕES FINAIS

Concluí-se que o aproveitamento da água de chuva é de vital importância, podendo representar uma redução de gastos expressiva com a utilização deste recurso, ainda sem valor comercial.

A instalação predial para águas pluviais, composta por calhas e condutores, foi pré-dimensionada, considerando os parâmetros relativos ao município, ou seja, a intensidade pluviométrica e as áreas de contribuição dos telhados da escola. Portanto, esses são os parâmetros essenciais para que se possa extrapolar este trabalho a outras edificações de Santa Maria-RS.

Pode-se afirmar que o sistema de captação de água de chuva é eficiente, pois a capacidade de captação calculada, 32,15 m³/mês, foi bem superior ao volume previsto para a cisterna, 8,27 m³. Inclusive recomenda-se a avaliação futura de outros usos não-potáveis, em virtude desta capacidade potencial de captação.

Contudo, para que se tenha a real redução de consumo de água tratada é importante conceber o projeto executivo e financeiro, avaliando os custos da implantação deste sistema versus os benefícios, ou seja, a economia global de água potável.

REFERÊNCIAS

ACQUA SAVE. Sistema de captação e reaproveitamento da água de chuva. **Dimensionamento de sistema de captação de água de chuva**. Disponível em: http://www.acquasave.com.br> Acesso em 04/10/2007.

AGRITEMPO. Sistema de monitoramento agrometeorológico. Dados meteorológicos – Santa Maria (INMET). Disponível em: http://www.agritempo.gov.br/agroclima/sumario Acesso em: 04/10/2007.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 10844**: instalações prediais de águas pluviais. Rio de Janeiro, 1989.

BRASIL. Lei nº 9.433, de 8 de janeiro de 1997. Institui a política nacional de recursos hídricos, cria o Sistema Nacional de Gerenciamento de Recursos Hídricos. Disponível em: http://www.ana.gov.br/Institucional/Legislacao/leis/Lei9433.htm Acesso em: 04/10/2007.

COMPANHIA RIOGRANDENSE DE SANEAMENTO. Relatório de faturamento – leituras e consumos do imóvel. Acesso em: 27/09/2007.

FENDRICH, R. Coleta, armazenamento, utilização e infiltração das águas pluviais na drenagem urbana. Tese de doutorado, Curso de Pós-graduação em Geologia Ambiental – Universidade Federal do Paraná, Curitiba, 2002.

PRUSKI, F. F. et al. **Hidros**: dimensionamento de sistemas hidroagrícolas. Plúvio 2.1: chuvas intensas para o Brasil. Viçosa: Ed. UFV, 2006.

 $YOSHIMOTO,\ P.\ M.;\ SILVA,\ S.\ M.\ N..\ \mbox{Redução do custo de energia elétrica em sistemas de abastecimento de água.\ Uso racional de água.\ São\ Paulo:\ ABES,\ 2005.$